Spatial Global lllumination

Michael H. Auerbach, University of Maryland 2011

|

i1
. \\\
P\ \ \

W -

A
A
Spatial Global lllumination is a technique for rendering spatially approximated photo-realistic
lighting of fully dynamic scenes at unusually fast speeds. Spatial Global lllumination offers an excellent

compromise between quality and performance making it a highly viable solution for next generation

video games.

Spatial Global lllumination (SGI) was developed by Michael Auerbach [Auerbach 2011] as a
proprietary global solution to be used in an upcoming engine. Research was preformed over many years
beginning in 2008. Today, Michael is working with 3d artist Jordan Gabrielle and Dexsoft Multimedia to
integrate his research into a functional game engine for use in future project. In the following chapters,

Michael describes the benefits and limitations of SGI as well as implementation and research.



Origin

Global lllumination, specifically diffuse reflections and radiosity lighting, is an essential asset to
portraying mood and spatial perception in games. However, due to the complexity of simulations
creating such phenomena, many game developers omit this important aspect of scene lighting to
provide faster rendering times. When we were in the design stages of our engine, we were split
between using a more accurate static radiosity solution (inspired by Valve) and a fully dynamic lighting
model (inspired by Crytek). We experimented with various methods over a couple of years, including

ray-tracing, screen-space methods, analytical solutions, light propagation volumes, and other various

techniques.

\ J» AT
Scene from “Portal2” courtesy Valve Corporation — the radiosity lighting model used in Valve’s
Source engine gives their games a unique feeling and induces mood and emotion; two elements that we
feel are vital to immersing the player into the environment and captivating their imagination.



Unfortunately, none of these solutions met our standards. Either the method was too slow for

real-time use or the method was too limited in terms of quality and effective output.

For a while, we decided to use static global illumination, and began experimenting with some
sort of PRT system. Unfortunately, we found that this system used a large amount of memory over large
scenes, and did not recreate the “feeling” or radiosity lighting that we desired. Furthermore, the system
was very limiting as it only supported static geometry, something that many modern games are moving
away from (source, BF3, dynamic destruction). We wanted a solution that would offer true radiosity

results while remaining dynamic enough to be affected by dynamic objects and procedural destruction.

At the time, we were also developing a new algorithm for rendering shadow maps which
involved grouping objects spatially to extract penumbra delta information. This technique required us
to create a very crude representation of the scene in order to accelerate shadow map generation. After
a lot of testing, we found that creating a dynamic voxel map containing the scene geometry was the
most efficient way to represent the scene in this case. We now had an engine that was creating a

dynamic voxel map representation of the scene every frame. We realized that we could take advantage

of this to create world space ambient occlusion and real-time reflections, and later, simulate radiosity

— ]

lighting.

Original concepts such as real-time ray tracing (left) and LPV (right) were eliminated as efficient
solutions due to poor performance and/or quality.



Scene Voxelization

Because scene voxelization has already been well optimized and discussed in (source), we will
omit the general details of scene voxelization in general. However, we would like to present some “best

practices” that work to improve SGI quality and performance.

First, we must consider the IA stage and the geometry we feed to the GPU. Although highly
detailed geometry can be efficiently voxelized on modern hardware, any details smaller than one voxel
will not be noticed. Therefore, we found it to be most efficient to only voxelize the LOD models of large
objects and the bounding boxes of small objects. Effectively we save a large amount of bandwidth

between the CPU and GPU and reduce both rasterization time and GPU VRAM usage.

Another optimization is to voxelize the scene without textures and store the averaged object
colors per-vertex or even per object when possible. This reduces “flickering” caused by rasterization of

objects smaller than a texel/voxel and extends to the concepts of texture filtering.

We must also consider voxel map size. Since we keep our voxel map centered around the player
camera. We found that, for most scenes, we did not need a very large voxel map to recreate quality
results. For a voxel size of 1 meter cubed, we found that a 128x128x32, 128x128x64, or even 64x64x32
voxel map worked perfectly, with results outside this range falling back to SSAO/SSGI (which at that
distance can actually cover quite large areas). We also found that using cascaded voxel maps works

quite well and we are currently putting more time into researching this.

Finally, we found that by snapping vertices to the regular grid of voxelization, we can further
stabilize the rasterization process. In order to deal with fine or non-evenly distributed models within a

voxel, we can simply store the polygons moment via the geometry shader.



Figure 1A — voxel map w/out optimization - 8ms Figure 1B — Voxel map w/ optimizations - 3ms

Figure 1 shows how important these optimizations are in terms of quality and stability. Notice
that the wholes present in 1A are eliminated by snapping the polygon vertices to the regular grid.
Additional geometry, such as polygons perpendicular to the voxelization camera are also captured.
Finally, we see that the use of LOD geometry in 1B presents more stable results at a fraction of the time

required to voxelize full detail models.

Light Injection

Once we have obtained a 3d texture filled with a voxelized representation of the scene, we must

consider how to use this data effectively to produce high quality global illumination.

We propose a method that takes parts from Light Propoagation Volumes (Crytek 2011), classical
photon-mapping (Jensen 96), PRT (source), and general mathematical recursive convergence of signals
based on spherical harmonic light direction and ray-marched occlusion. In general, we generate we
create a second 3d texture to represent radiance values distributed on our regular voxel grid
throughout the scene. Usually we found that a 3d texture with the same dimensions as the voxel map

works best as voxel sizes smaller than the scene voxel map proved to add little quality gain for such a



performance hit. On the contrary, using larger light voxel sizes compared to the scene voxel size created

results that were too low quality for our goal.

To make SGI independent between scenes (to improve SLI/crossfire performance (source) and
for highly volatile scene geometry), we recreate the entire lighting simulation per-frame. At the start of
each frame, we clear the 3d texture to black (0,0,0) and inject lighting data into the volumes. However,
unlike LPV, we do not need reflective light maps for this process, thus making light injection significantly
faster. Also, to makes sure that only geometry radiates light back into the scene (and not empty space),
we only inject light into voxels that have their correlated position in the scene voxel map occupied.
Simply, we cull each light per voxel and for each light we sample n texels from the shadow map and
compare to sampling offset position. This way we can reduce “flickering” caused by shadow map
aliasing and dynamic scenes. Often 3x3x3 samples is adequate for our use, however, this greatly varies
on the voxel dimensions and shadow map granularity used. For shape and area lights, we simply
voxelize their meshes and add their light color to the 3d light voxel map. For faster performance, you
can also skip the shadow map sampling and inject the light source as a point into the 3d light voxel map.
For lights that influence the scene over greater distances, such as the sun, sampling the shadow map is
our best option, however, using a coarser shadow map is best (ideal if you are using cascaded shadow
maps for the sun). Also, for skylight we can skip light injection altogether and simply add an ambient
occlusion value via backwards ray-marching. Alternatively, you could render an isometric shadow map

perpendicular to the ground plane as an estimate to skylight to be used in light injection.

Basically, this process is a simplified photon mapping scheme that uses both forward and
backwards ray-tracing/ray-marching to converge global illumination results. Note that the light injection

step is collecting radiance information directly from light sources and storing it spatially into a voxel



map. To complete the simulation, we then preform voxel-to-voxel tracing around the scene, and finally

a forward ray-trace via rasterization to gather the lighting data.

Radiosity Simulation

While the light injection stage is somewhat similar to that proposed b Crytek (LPV Crytek 2011) less the
reflective shadow maps, the Radiosity Simulation differs greatly from radiance propagation and is more

similar to classic radiosity simulations and photon mapping.

At each voxel, we are interested in gathering the light emitted from visible
surrounding geometry by ray marching through the scene voxel map. If the ray collides with
a occupied voxel, we add the corresponding radiance value in the light voxel map weighed
by the trace distance. If we solve this problem recursively, we can achieve multiple bounce
radiosity. However, at the time of this writing, this requires way too many texture fetches

(in the order of thousands per voxel) and is unacceptable for current hardware.

To solve this issue, we propose using intermediate results that are represented
spatially throughout the voxel map. Instead of completing each ray march in a single pass,

we can complete each ray march over numerous passes, thus lowering the ray-march

o
~F
0
1
T

distance while maintaining recursive radiosity lighting results. However, care must be taken

to manage the per-pass results as to not bleed radiance values from invalid sources into our

¥

selected ray. If all rays that intersect are allowed to exchange radiance information, then

we simply have an overall effect that looks very similar to LPV and does not accurately

¥

portray secondary shadows and other important global illumination effects. In other words,
we cannot simply blur the light volumes (even selectively) as in LPV. To the right we see the

results of each radiosity simulation pass.




The solution to this problem is to store, at each selected voxel, the endpoints of each active ray
as well as the collected radiance data. This concept is similar to cone mapping (source) as it can
continue each succeeding pass’s ray-march at the closest voxel in a direction that is visible to the
selected voxel. It should be noted that, as LPV converges outward from the source voxel, we are in fact
converging inward, but using a backwards ray-marching to arrive at the radiating voxels’ positions. The
benefit of this is that, unlike LPV, only light volumes that are within geometry occupied voxels may
contribute radiance information to the source voxel. This creates a more physically correct algorithm
and a much higher quality result. For example, in SGI, voxel located right in front of an area that is in the
sun does not necessarily gain any radiance value from the sun. In LPV, this is not the case, and the voxel

would become brighter as a result of being close to the nearby sunlit area.

Images (left to right): slice of the light voxel map using LPV, slice of the light voxel map using SGl,
difference between the two where red is a larger difference. Notice that using LPV, light does not
converge throughout the entire scene and does not cast secondary shadows.

To the right we see a light voxel map slice
showing the final results of a parking garage scene lit
with only skylight. The upper left corner of the slice is
connected to the outside and is the only source of light
for the entire scene. Notice that the radiosity simulation
bounces the light across a very large area. Secondary
shadows and other global illumination phenomena are

created procedurally by the spatial radiosity simulation.




Scene convergence

After the radiosity simulation, we add the indirect illumination approximation to the scene. We
apply all indirect illumination terms per pixel. For diffuse light reflection, we simply lookup the light
voxel map at the location of the texel being shaded with an offset in the texel’s normal direction. We
scale this offset inversely with the material’s “softness” parameter to simulate subsurface scattering.
Effectively, soft materials gain more uniform indirect illumination in all directions as harder materials

will appear to have more defined normals simulating a low level of sub-surface light scattering.

To simulate dynamic reflections at each texel, we calculate a reflection ray about the texel’s
normal from the camera. For high quality settings, we actually preform a ray-march in this direction,
and add the light voxel map’s color at the collision point to the texel’s specular term. For lower settings,
we omit the ray-march and simply scale the reflection ray by a artist defined length and add the light
voxel map’s color at that location to the texel’s specular term. For sharper reflections, you can raise the

resulting color value to the nth power. For more blurry reflections you can average the specular term

with neighboring light voxel map values around the traced (or approximated for lower settings) location.

| = _—

Scene using SGI — the light voxel map is augmented with the scene



Performance:

Below we see a chart containing the average maximum allotted frame rendering time in our
upcoming engine. Note that the left column is set to extreme quality and the right column is set to

minimum quality.

Single Pass G-Buffer Single Pass G-
We can see that SGI is actually quite w/ tessellation Buffer w/

efficient, only requiring less than 9ms per frame to Shadow Maps Shadow Maps

. . . 10 ms 4 ms
render extremely high quality results. SGl is slower

SSAO SSAO

than SSAO and other static techniques in current
2 ms 1ms

deployment, such as Enlighten. However, the
Scene Voxelization Scene Voxelization

ability to render photo-realistic lighting in fully
dynamic scenes with no pre-computation is very
powerful. Artists can update the scene in real-time
cutting down on development time. Additionally,
by removing the limitations of static geometry, SGI
can be used in applications that require procedural
destruction and complex dynamic worlds.
Additional uses include accelerating CAD to provide

more realistic feedback to architects and artists in

3ms

Spatial Radiosity
5ms

SGI
<Ilms

Deferred Lighting

4 ms

SSR + Spectral
5ms

Post Processing
5ms

2ms

Spatial Radiosity
1ms

SGlI
<1lms

Deferred Lighting
2 ms

SSR + Spectral
2 ms

Post Processing
1ms

real-time. Further research should be placed into

comparing the results of SGI with ray-traced CAD

results.

SGI requires a significant amount of Video RAM to store the voxel maps and uses a large amount

of internal GPU bandwidth. However, In my last paper, “Optimizing Screen-Space Ambient Occlusion:



DFSSAO,” | show that modern GPUs have an excessive amount of internal bandwidth compared to
previous generations and that bandwidth is increasing exponentially. Large numbers of texture fetches,
on the order of 250 per pixel, are readily available in less than 1 millisecond on current generation
hardware [Auerbach 2011]. Our implementation of SGI does not exceed even half of this limit, and thus,
the large number of texture fetches used to render SGI does not cause any performance loss on modern

hardware.

Conclusion

SGl is an efficient and powerful rendering technique that solves the indirect lighting equation
spatially to increase performance for real-time applications. SGI works with completely dynamic scenes
which decreases development time and streamlines content creation by eliminating pre-processing. SGl
enables complex physical interactions between objects and procedural destruction to be rendered with
photo-realistic lighting previously only available for static geometry. As a result, SGl is a highly viable
global illumination solution for game developers, combining full dynamic lighting with an immersive

photo-realistic feel.




T — Wi

A typical scene rendered with minimum settings in our engine (top). Note the world space ambient

occlusion, radiosity lighting, and real-time reflections created using SGI. The scene also feels ambient
and delivers emotion and mood to the player. Scene rendered at 140 fps on a gtx570 w/ only sunlight
and skylight. Bottom is a different scene at medium settings rendered at 75 fps at 1200p on a gtx570.

RN




© Michael Auerbach 2011

Notice: This is a DRAFT ONLY. Peer review and editing is still required. Please contact author at

mikea@umd.edu for errors and corrections.

DO NOT REDISTRIBUTE


mailto:mikea@umd.edu

